提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)

五、说教学过程

(一)创设情境,发现新知

首先提出问题

问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

[page]

【设计意图及教法说明】

在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,

(1)你能用含有R的代数式表示I吗?

(2)利用写出的关系式完成下表。

R/Ω 20 40 60 80 100

I/A

当R越来越大时,I怎样变化?当R越来越小呢?

(3)变量I是R的函数吗?为什么?

【设计意图及教法说明】

因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通 过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简 单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

【设计意图及教法说明】

学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

【设计意图及教法说明】

问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

(二)合作探究,获得新知

1.出示问题

想一想,你还能举出类似的例子吗?

【设计意图及教法说明】

这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

2.启发学生建构新知

反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

反比例函数自变量不能为0!

反比例函数的一般形式:y= k/x(k为常数,k≠0)

反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)

【设计意图及教法说明】

这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

(三)反馈练习,应用新知

根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

1.基础过关

(1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?

①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2

【设计意图及教法说明】

此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

(2)做一做

①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

③y是x的反比例函数,下表给出了x和y的一些值:

a.写出这个反比例函数的表达式;

b.根据函数表达式完成下表。

表略。

提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)