提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)

三.教学过程分析

1.创设情景—引入新课

教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x²图像为引子,让 学生画y=x²和y=2x²图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学 生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x²与y=ax²图像的关系,得出本节课的第一个知识点,即二次项系数a决 定图像的开口方向和开口大小。

由浅入深,下面让学生画y=2x²,y=2(x+1)²与y=2(x+1)²+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最 后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴 趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

2.探究交流—发现规律

从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x²与y=2x²+4x-1的图像,再与课件上的图像对比并叙述二者 之间的位置关系,得出结论:若二次函数的解析式为y=ax²+bx+c,先将其化成y=a(x+h)²+k的形式,从而判断出y=ax²+bx+c的图像 是如何由y=ax²变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)²+k中,顶点坐标应是(-h,k),而 不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k 的值是已知的,只需要确定a的值就可以了。

3.启发引导—形成结论

前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x²到y=ax²,y=ax²到 y=a(x+h)²+k,y=ax²到y=ax²+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左 移,h负右移;k正上移,k负下移。

提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)